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INTRODUCTION 

In order to familiarize the reader a brief description of the Transit 

Satellite Navigation System as reported in the literature is given. Two 

previously known methods of data reduction are then described which a nav­

igator may use to determine his position. The proposed method of data re­

duction presented herein is then discussed briefly and comparisons are 

made with the first two methods. 

Description of the Transit Satellite System 

The Transit Satellite Navigation System is being developed as an aid 

to high accuracy navigation on the surface of the earth by the Applied 

Physics Laboratory of The Johns Hopkins University (3, 4). The ultimate 

accuracy of the system is not yet known, but accuracies of one-half nau­

tical mile and better are thought possible. The system does not allow for 

continuous navigation, but rather it is intended for correcting the navi­

gator's position periodically. It is thought that ships will make primary 

use of the system, although it might prove feasible for aircraft naviga­

tion in the future (7). 

The exact specifications for the system have not been published, but 

numerous magazine articles have described the basic concepts (2). The 

following is a simplified explanation of how navigation is accomplished. 

There will probably be four or more Transit satellites, each in a near 

circular, polar orbit approximately 500 nautical miles above the surface 

of the earth. The satellites will be positioned such that a navigator at 

any point on the earth's surface will be able to observe a satellite at 

least once every 90 minutes. The data taken by the navigator from 
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observing one pass of any of the satellites will usually be sufficient to 

determine a position fix to the desired accuracy. Each satellite broad­

casts a constant CW radio signal in the 100 to 500 megacycle region. When 

a satellite appears above the horizon, the navigator receives this CW ra­

dio signal and extracts the Doppler frequency shift caused by the relative 

motion of the satellite and the navigator. As the satellite crosses the 

sky, the navigator measures and records this Doppler frequency shift. 

Each satellite has a memory that can be loaded with information from 

a ground injection station that is part of the Transit system. Ground 

tracking stations observe the orbit of each of the satellites and compute 

a set of parameters which will describe the orbit. Every twelve hours 

this orbital information is loaded into the satellite's memory. Once 

every minute the information is broadcast by the satellite by superim­

posing binary coded information on the CW signal. During the pass of the 

satellite the navigator must decode this orbital information and from it 

compute the position of the satellite as a function of time. 

Using an assumed position for himself and the true position of the 

satellite, the navigator can compute a theoretical Doppler curve which he 

can compare with the Doppler curve he has observed. The true position of 

the navigator is found by adjusting his assumed position until the theo­

retical Doppler curve is a "best match" to the observed Doppler curve. For 

a high accuracy position fix, the curve matching computations are complex 

and must be done with a digital computer. 

The navigator1 s position, determined in this manner, has one known 

ambiguity. There are two points on the earth's surface at which nearly 

identical Doppler curves will be observed. The false point is located 
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symmetrically on the other side of the plane of the orbit to the naviga­

tor's position. The rotation of the earth causes dissimilarities between 

the two curves which usually make the distinction possible. If the satel­

lite does not pass too close to the navigator, these points are relatively 

far apart and the more reasonable position is easily determined. If the 

satellite passes nearly overhead, the two points must be distinguished by 

determining which yields a "better match" between the theoretical and ob­

served Doppler curves. However, when the satellite does pass nearly over­

head, the effect of noise in the Doppler data prohibits an accurate posi­

tion fix (3). 

To be more exact, the satellite will broadcast two harmonically re­

lated CW signals so that a correction for ionospheric refraction is pos­

sible. The error in the Doppler frequency shift due to refraction is, to 

a first order approximation, inversely proportional to transmitter fre­

quency. Hence, by suitably combining the Doppler shifts from two trans­

mitter frequencies, the first order error terms can be made to cancel (3). 

In obtaining a "best match" between the theoretical and observed 

Doppler frequency curves, three variables must be adjusted. Two vari­

ables relate to the navigator's.position, his latitude and longitude. The 

third variable allows a constant bias on the observed Doppler curve to 

account for long term drift in the oscillators of the satellite and the 

navigator. These oscillators are assumed stable and constant during a 

given satellite pass (3). 

Curve A of Figure 1 is a typical Doppler curve computed for a circulai; 

polar orbit 500 nautical miles above the earth with the navigator on the 
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Figure 1. Typical Doppler curves 
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equator. The projection of the satellite's orbit on the surface of the 

earth lies about 400 nautical miles from the navigator; the transmitter 

frequency is 100 megacycles. Because of the rotation of the earth, the 

curve is not symmetrical with respect to the zero crossing. Curve B re­

sults from a change in the navigator's longitude. The major effect is to 

multiply the frequency by a constant. A change in the navigator's lati­

tude essentially shifts the frequency curve in time as is shown by Curve 

C. A constant bias on the Doppler frequency shifts the curve in fre­

quency by a constant amount as is shown by Curve D. Curves B and C are 

greatly exaggerated for clarity. If the navigator's position had been 

changed by only one nautical mile, the curves would not have been dis­

tinguishable on the graph. It therefore requires very precise fre­

quency measurements to achieve high accuracy navigation (6). 

Present Methods for Computing the Navigator's Position 

The purpose of this research is to investigate a method for obtain­

ing a "best match" between the theoretical and observed Doppler curves, 

and thus determining the navigator's position. A separate problem that 

will not be considered is that of determining the position of the satel­

lite as a function of time from the orbital information broadcast by the 

satellite. For purposes here, the position of the satellite as a func­

tion of time will be assumed known. 

Two methods for obtaining a "best match" have been reported in the 

literature. A least squares curve fit was suggested by the Applied 

Physics Laboratory (3) and the method of averages was proposed by K. C. 

Kochi of Autonetics Division of North American Aviation (6). The least 
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squares fit is generally accepted to be more accurate and allows the navi­

gator to estimate the accuracy of his position fix. The method of aver­

ages, however, requires much less computation time and considerably less 

storage of data. 

Method of least squares 

In the method of least squares, the observed Doppler curve is defined 

by a set of discrete data |fç | , where f̂  is the observed Doppler fre­

quency shift at time t̂ . The residual of a data point, m-̂ , is defined to 

be the difference between the theoretical Doppler shift, fm , and the ob-
i 

served Doppler shift at time t̂ . The theoretical Doppler shift is a 

function of the navigator's latitude, 9, and longitude, X, and the bias, 

b. 

K, = fT (6, b) - f 1 
i ijL uj. 

An error function, F(0, X, b), is defined as the sum of the squared 

residuals. 

F(e, X, b) 4̂2 2 
i 1 

The "best match" occurs when the three variables are adjusted in such a 

way that the error function is a minimum, a condition that is found using 

the following three equations: 

F0(e, X, b) = o 3 

Fx(e, x, b) = o k 

Fb(e, x, b) = o 5 



www.manaraa.com

7 

The solution of these three equations, 8̂ , X , and bQ, is the navigator's 

computed position and bias. The minimum value of the error function, 

F(Ôc, X , b̂ ), yields an estimate of the accuracy of the position fix. 

Since Equations 3, and 5 are nonlinear, an iterative technique is 

used to find their solution. The partial derivatives of the error func­

tion are expanded in first order Taylor series about the assumed position 

of the navigator, 0 and X , and the assumed bias, b . ' a a a 

Fe(e, X, b) = F6(6a, Xa, ba) + Fe6(ea, xa, ba) m 

+ V6a> Xa> + V6a> V V = 0 6 

P\(®' X> b> " V9a'Xa'ba> + FX6<ea'Xa'ba> 

+ FXX<6a>Xa>bâ  + FXb<9a'Xa'ba> » " 0 

Fb(e, x, b) = F1(ea,xa,ba) + Fbe(ea,xa,ba) A6 

+ FbX<9a'Xa'ba> A + Fbb<9a'Xa'ba> ZSb = 0 8 

9 = 0a + A9 9 

X = X + £X 10 
a 

b = b + £Sb 11 
a 

Equations 6, 7 and 8 can be solved simultaneously for ZX, and Ab. 

Using the newly computed assumed position, the iteration process is 

where 
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continued. 

The Doppler frequency is proportional to the time derivative of the 

slant range from navigator to satellite, called the slant range rate. 

Hence, not only the satellite's position must be known to compute the 

theoretical Doppler curve, but also the satellite's velocity. In every 

iteration, at every data point the satellite's position and velocity and 

the navigator's newly computed position and velocity must be used to com­

pute the partial derivatives of the error function. These computations 

are complex and require a great deal of computer capability, including 

both speed and storage. 

Method of averages 

The method of averages involves dividing the Doppler curve into 

three equal time periods. The integrals of the observed Doppler frequen­

cy, In , I , and In , are computed for each time period. 
1 2 3 

*1 \ = J f
0
(t)dt 12 

to 

IQ = / fQ(t)dt 13 

2 *1 

*2 

/3 

*2 

When the theoretical values for these three integrals, I_ , I™ , and 3L, , 
1 2 3 

are equated to the observed values, three simultaneous equations in 
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latitude, longitude and bias result 

It (e, ̂  b) - i0 = o 
i i 

 ̂(e, x, b) - i0 = o 
2 2 

16 

I (0,X, b) - I = 0 

3 3 
17 

The solution of these three equations is the navigator's position and 

bias. Since these equations are nonlinear, an iterative technique is 

used to find their solution. The theoretical integrals are expanded in 

first order Taylor series about the assumed position of the navigator, Q& 

and X , and the assumed bias, b . 
a a 

'6 

+ =3L «WV* + ̂  «VW* = =0. 18 

%(*a'W + =Tg (°a'\'\)* 

9 

19 

+ I? + 4 (0a,\,ta)4b = I* 
3 

20 

The computed position of the navigator and the computed bias are given by 



www.manaraa.com

10 

Q = Q + ÙQ 21 
c a 

X = X + & 22 
c a 

b = b + Ob 23 
c a 

Equations 18, 19 and 20 can be solved simultaneously for £6, AV, and Ab. 

Using the newly computed assumed position, the iteration process is con­

tinued. 

The definite integral of the Doppler frequency is proportional to the 

slant range from navigator to satellite evaluated at the end points of the 

integration. So, in this method only the satellite's position must be e-

valuated, not its velocity. Also, there are only four points for which 

the position must be determined, the points defining the three time per­

iods of integration. The computer requirements for this method are not 

nearly as stringent as for the least squares method. The author is not 

aware of any way for the navigator to estimate the accuracy of the posi­

tion fix found using this method. 

Proposed Truncation Method for Computing 
the Navigator's Position 

The author proposes a method, arbitrarily called the truncation 

method, which is a combination of the method of least squares and the 

method of averages, and uses a modification of the iteration technique. 

In the truncation method, the Doppler curve is first divided into many 

time intervals. The integral of the Doppler curve is then computed for 

each interval and a least squares fit is made of the integrals of the 
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Doppler curve. The least squares fit is used to obtain the higher accur­

acies and to allow an estimate of the accuracy of the position fix. The 

fit is applied to integrals of the Doppler curve to allow a first order 

smoothing of the Doppler data by the integration and to eliminate the need 

for computing the satellite's velocity. The iteration technique is 

changed in the following way. In the two methods previously described, 

three first order Taylor series expansions were used and the coefficients 

of these series were recomputed with each iteration. If higher order ex­

pansions were used, say to the third or fourth order, then the solution 

should be sufficiently accurate without any iterations. That is, the co­

efficients need be computed only once using the assumed position of the 

ship and the true position of the satellite. These coefficients can be 

computed during the pass of the satellite, leaving only a small amount of 

computation after the pass to solve the Taylor series for the position of 

the navigator. 

The truncation method lends itself to a real time method of solution. 

The coefficients of the Taylor series are summations which accumulate as 

each data point is encountered in time. At the end of each time interval, 

the coefficients form a complete set with which an attempt can be made to 

determine a position fix. After enough data has accumulated so that a fit 

can be made where the estimated accuracy is sufficiently good, the rest of 

the satellite's pass can be ignored. 

Since the majority of the computations are made during the pass of 

the satellite, when several minutes are available, the computer speed re­

quirements are not as stringent. Also, since no iterations are necessary, 

the observed Doppler data and the satellite's position for each data point 
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need not be saved for future computations, making the storage require­

ments for the computer far less. 

The major disadvantage of the truncation method is that the con­

vergence of the Taylor series, that î  the number of terms required, de­

pends on the original accuracy of the navigator's assumed position. Com­

puter studies will be described which indicate that the third order terms 

are usually sufficient for one-tenth nautical mile accuracies, and fourth 

order terms are almost always sufficient. 
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DERIVATION OF THE TRUNCATION METHOD 

The derivation of the truncation method, which has been broken down 

into several stages, will be discussed in this chapter. 

Explanation of the Coordinate System 

A geocentric coordinate system that is fixed in space, as shown in 

Figure 2, will be used. The geocentric latitude and right ascension of 

the satellite are 9 and X respectively. The corresponding coordinates 
S s 

of the navigator are 6 and X. Longitude and right ascension differ only 

by the angle of rotation of the earth. The radius of the earth at the 

position of the navigator is R, the radial distance to the satellite is 

r and the slant range from the navigator to the satellite is P. The ge­

ocentric angle between the navigator's radius vector and the satellite * s 

radius vector is 0. The locus of points generated by the intersection of 

the satellite's radius vector and the surface of the earth is called the 

satellite's subtrack. 

The slant range, P, is given by the following equation 

P2 = r2 + R2 - 2rR cos 0 2k 

where 

cos <b - sin 9 sin 9 + cos 9 cos 9 cos (X - X) 25 
s s N s 

The latitude of the navigator is given by 

t 

9 = 9q + J 9(t)dt 26 

tQ 
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where 9̂  is the latitude at some epoch t̂ , and 0(t) is the latitudinal 

angular velocity of the navigator. The right ascension of the navigator 

is given by 

t 

27 

U 

x = xQ + n(t - tQ) + J x(t)dt 

*0 

where X̂  is the right ascension at t̂ , ft is the sidereal earth rate, and 

X(t) is the longitudinal angular velocity with respect to a meridian fixed 

on the surface of the earth. 

To identify the true, assumed and computed values of a variable, such 

as the navigator's latitude, the subscripts t, a and c are used respec­

tively. 

The correction terms for the navigator's position are t] for latitude 

correction and v for longitude correction. 

<W it 28 

Xt = Xa + vt 29 

If it is assumed that the navigator's angular velocities in latitude and 

longitude are accurately known, T| and v are constants. The errors in com­

puting the navigator's position are 6̂  for latitude error and for long­

itude error. 

9t = ec + 8n 30 

x
t - xc 

+ 5V 31 
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Derivation of the Error Function 

The true Doppler frequency, f̂ , is proportional to the slant range 

rate, P. The slant range rate is dependent on both the position and ve­

locity of the satellite and the navigator. It will be assumed that the 

position and velocity of the satellite and the velocity of the navigator 

are known as functions of time. Therefore, the slant range rate can be 

expressed as a function of the navigator's position and time. 

The transmitter frequency of the satellite is f̂ , and c is the velocity 

of light in free space. 

In the navigator's receiver, the two received signals are appropri­

ately combined and mixed with a local oscillator to yield a received 

Doppler frequency, f̂  , that is void of first order refraction error. 
r 

This received Doppler frequency is essentially the true Doppler frequency, 

but it also contains noise, f , and a constant bias, B. 
' n' ' 

fa = fd + fn - B 33 
r 

The integral of the Doppler frequency between times t̂  ̂  and t̂  

scaled to the dimension of velocity is called ô . 

32 

t. 
x 

f. 
c 

0 
ta dt 34 

t 
Ï-1 

The following definitions will be made. 
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• r'' 
•i-Ï; 1 » 

î-1 

= p(®t'W 36 

= *1 - Vl 37 

From the preceding equations, 

°i = pi<etA> - pt-i(Vxt) - \+ fôB A "i 38 

The Doppler data to be considered is the set |ajJ of integrals of the re­

ceived Doppler frequency. It might be noted that the integration can be 

performed with no truncation error by counting the number of cycles in the 

received Doppler frequency signal. 

The theoretical value corresponding to the integrated received Doppler 

frequency is cr™, , where 
Ai 

oT_Xn,v,b) = Pi(oa + H, + v) - pjL.1(oa + \ + v) + b A t± 39 

The variable b is included to account for bias in the Doppler frequency and 

a possible constant term in the noise. The residual, in the least 

squares fit is 

H±Kv,b) = <*T (Tl,v,b) - a± 40 

The error function, F(ïj,v,b), is defined as the weighted summation of the 
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42 

squared residuals over the number of intervals, M (5)• 

M 

F(Tl,V,b) = ] o 2̂ 4l 

i = 1 

The weighting function, , is defined to be positive. The optimum value 

of the weighting function depends on the statistical properties of the 

noise in the received Doppler signal. The general weighting function will 

be used to derive the error function and an optimum value will be sug­

gested later. In order to isolate the term for bias in the residual, a 

function ê (T), v) is defined as 

e±(l,v) = P1(Sa + 1, \ + v)-Pi_i(9a + i), Xa +v) - ^ 

Now, the error function can be written as 

M 

F(n,v,b) = %> [ei(T],v) + b At± ]2 43 

i = 1 

The minimum value of the error function is found using 

Fn(Tl,v,b) =0 44 

Fv(n ,v,b) =0 45 

Fb(n ,v,b) =0 46 

It is beneficial to consider the last equation first. 

M 

Fb(n ,v,b) + b At.] 2 47 

i = 1 

M 

= 2 ̂  ] o^l! ei n̂'v) + b At^ = 0 48 

i = 1 
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This equation can be solved for b in terms of T) and V. 

M 

b(n,v) = - i ' w^(n,v) At. 49 
i = 1 

where 

M 
T = ^ 

i = 1 
= 2t°iMi2 50 

The error function can now be expressed in two variables, T) and v. 

F(TL,V,b) = F(TL,V,b(T],v)) = F(T],V) 51 

From Equations k-3, 49 and 50 

M 

F(TI,V) = \ + 2e1bAtjL + b2At±2] 52 

i = 1 

M M M 

53 = S Vi2 + 2b + fc2 

i = 1 1 = 1 1 = 1 

M 

= 2> | %2(n,v) - Tb2(i),v) 54 

1 = 1  

Notice that F(*n, v) contains a summation of terms which is the error func­

tion with no bias, and a correction term for bias. 

Taylor Series Expansion 
of the Error Function 

The solution of Equations 55 and 56 gives the computed position of 

the navigator, T)̂  and V̂ , where the error function is a minimum. 
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M 

F-rçKv) = 2 | - 2Tbb̂  = 0 55 

1 = 1 1 

M 

Fv(n,v) = 2 2> , '  Viev " 2 T b b
v  

=  0  56 
i = i i 

The partial derivatives of the error function are non-linear and explicit 

equations cannot be written for T) and v. The equations can be solved by 

an iteration process using first order Taylor series expansions for the 

partial derivatives of the error function about the assumed position of the 

navigator. 

F„(n,v) = F„(VVA) + Fm(la,va)»l + Fnv(lA,Va)Av = 0 57 

Fv(!l,v) - Fv(na,va) + + Fvv<Vva)Av = 0 58 

where 

TJ = TLA + ATI 59 

V = V + AV 60 
a 

Equations 57 and 58 are solved for Arj and Av using the assumed position of 

the navigator. Then a new assumed position is found from Equations 59 and 

60, and the process is repeated until the desired accuracy is achieved. 

The five partial derivatives of the error function at the assumed position 

of the ship must be recomputed with each iteration. 

The need for successive iterations is eliminated if more terms are 

carried in the Taylor series expansions for v) and Fv(T), v). These 
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series form two polynomials in T] and v which can be solved simultaneously 

to find the navigator's position. For simplicity, the following notation 

will be used: 

aj+k 
6l 

T) = 0 
v = o 

The general Taylor series in two variables for F(TJ, v) expanded about 

F(0,0) is 

F("'v) = 2 62 

j = 0 k = 0 

If F is replaced by F̂ , and then by Fy, 

V'v)= Z Z MsrIj-w,k,J'ltvk 63 

j = 0 k = 0 

Fv(Tl'v)  ̂̂  • u-k):k: Fj-k,k+i71 
j = 0 k = 0 

J-V a 

All three of the above series are based on the set of partial de-

rlvatives of the error function evaluated at the assumed position of the 

navigator. This set of coefficients can be computed from Equation 54. 

aj+k -JL, 
Fjk • [ 2 Vi ("'v) - <">65 
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66 

The general form for the partial derivative of a squared function is given 

by 

j k 

dy1 

Equation 65 can be written as 

M 

k f2( ~̂~i 
X-J x.k r 1 J/\K/ fJ,ICj-J,k-K 

[ , mieJ,K ej-J,k-K 
i = 1 1 1 

' T bJ,Kbj-J,k-K ] 67 

where 

M 

V *  S y j A  6 8  

1 = 1 

and, for j and k not both equal to zero, 

ejk1 Pjk± " Pjk1_1 69 

The general expression for the partial derivatives of the slant range, p, 

is not known by the author, but the equations for some of the partial de­

rivatives appear later in the derivation along with a summary of the other 

equations required to compute the error function coefficients. 
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Minimization of the Error Function 

The truncated Taylor series expansion for a function f will be de­

noted by a superbar, f. The error function F(T),v) is approximated by its 

truncated Taylor series expansion. 

F(T),v) = F(tj,v) 70 

In order'for the. truncated error function to be a-minimum, 

F (ti,v) =0 71 

Fv(Tl,v) =0 72 

Since F̂ (%, v) and F̂ (T), v) are each high order polynomials in two vari­

ables, an iterative technique is used to find their solution. The follow­

ing first order approximations are made: 

V'V) = yVva' + Fnr|(Vva)ûr| + VW Av = 0 73 

Fv(i,v) = Fv(na,va) + F1)v(na,va)An + Fw(na,va) AV - O 74 

where 

TJ = T)a + AT) 75 

v = v& + Av 76 

The solution to Equations 73 and jk is given by 
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. Fv<VVa> VW " VW FvA'V 
at] - — -% T7 

F„„(VVa> Fvv<VVa> " F„A'Va> 

Av = VVa' VVa1 ' "A'V VVV ^ 

Fvv'Vva> - F„v(Vva> 
2 

The partial derivatives of the truncated error function which appear in 

Equations 77 and j8 are each polynomials in the two variables T) a and v_ 

whose coefficients are taken from the set | • The set |F̂ kj is 

computed only once and is then held constant throughout the iteration 

process. The first iteration is performed with ̂  = va = 0» Then a new 

T) and v are computed as the iteration continues. 
a a 

Unfortunately, there are several solutions to Equations J1 and J2. 

As was mentioned in the introduction, there are two points on the surface 

of the earth for which the error function is a relative minimum. There 

may also be a third point between these two for which the error func­

tion is a relative maximum. The point which is found by the iteration 

process depends on where the first iteration is started. The best esti­

mate of where to start the iteration is the assumed position of the navi­

gator, where T)̂  = v& = 0. This almost always leads to the correct posi­

tion. 

Optimization of the Weighting Function 

The weighting function will be optimized in the following way. First 

certain statistical properties will be assumed for the noise function, 
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Then the RMS position error due to this noise will be computed. 

The optimum weighting function is that which minimizes the RMS position 

error for the type of noise assumed. It will be assumed that f̂ (t) is a 

time stationary function with zero average value and has an autocorrela­

tion function which decreases exponentially to zero in a time small with 

respect to At̂ . The variance of the integral of such a function is ap­

proximately the product of the variance of the function and the integra­

tion time, At% , and the average value is zero (l). 

< N.S> = M2 At. 79 

where 

H2 = < fn2> 80 
o 

For simplicity, the weighting function will be optimized for an error 

function of one position variable, x. It can be shown that the same op­

timum value applies for a function of two position variables. The ob­

served function, ĝ , which is void of noise, is being matched by the com­

puted function, f(x)̂ , in the presence of noise, The perfect match 

occurs when x = x̂ , because 

g = f(x ) 81 
1 t i 

The residual, is defined to be 

fi±(x) = f(x)i - gi + N± 82 

The error function is 
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M 

F(x) = ] œ̂ 2 83 

1 = 1 

The error function is a minimum when x = where 

M 

rx(xc) = 2 Z ali[f(lc). - 8i + "i1 fA'. = 0 a 

1 = 1 1 x 

A first order approximation can be made for using Ô, the error in x. 

gi= f(xo'i + ̂ Xo\ 6 85 

where 

x, = x +6 86 
t c 

Equation 84 can be written as 

M 

a). [N. - Bf ] f =0 87 
i i x. x. 

i = 1 11 

The solution for 5 is 

M 

¥ifx, 
6 = i-J-i 88 

M o 

mifx. 
1 = 1 1 

The average value of 5 is zero since the average value of is zero. The 

variance of the error in x is found by squaring both sides of Equation 88 

and averaging over many positioning attempts. 
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M M 

yi "IVIYX/X i j 
,2 = 1 = 1 J =1 

[S 
89 

ŒF 
ixi 

The average value of N^N^, where i f j, is zero; the average value of N./ 

is M2̂  . 

N2 
M 

<»%. - 1-1 

2 2 
"I AVXl 

M -I 
90 

The optimum weighting function is that which minimizes the variance of the 

error in x. 

M 

d <0^ 
2 ^X,2 S 

J  J x  i = 1 

d. 
= 0 

to. M 

I - 1 

M 

V*. 
i = 1 

91 

This is equivalent to 

M 
= 0 

i = 1 
92 

Let j be chosen such that for all i, 
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93 

Since a> is positive, each term in Equation 92 must be zero, and for all 

I, 

" A =  * 

The solution to this is that 

w = constant 95 

I AT  ̂

It can be seen from Equation 88 that the constant is arbitrary, so it will 

be chosen to be unity. 

MI=4 96 

It should be noted that this weighting function is optimum only for 

the time stationary, random noise that was assumed. In general, the noise 

function will not contain time stationary noise. 

The optimum value of can be used to rewrite some of the previous 

equations. From Equation $0 

M 

1 = = *M - *0 97 
1 = 1 

From Equations 42 and 49 

M 

fcC^v) = - |(PM - PQ - ' o±) 98 

1 = 1  
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From Equation 68, for j and k not both equal to zero, 

V'V) = " I (% " 99 

From Equation jk 

M  2  e .  ( t l , v )  
F(ri,v) = -3̂ - T b (TI,V) 

i = 1 

And from Equation 67 

100 

A/k 

J = 0 K = 0 J/XK 

r  M  

.i = 1 
J ÙT± SJ,K Ĵ-J,K-K  ̂ T bJ,Kbj-J,k-K 

101 

Estimation of the Computed 
Position Accuracy 

In determining the navigator's computed position, Equations 71 and 72 

are solved simultaneously for T)^ and v^. If a sufficient number of terms 

are carried in the Taylor series expansions, i) and should also satisfy 

Equations 55 and 56, which can be rewritten as 

M  M M  
EIETJI 1 
At. " T 

i = 1 1 i = 1 i = 1 

e_ =0 102 

M  
e,e M  M  

Î X i  S  EV -0 103 
I = 1 I i = 1 1 = 1 
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For simplicity, the following notation will be adopted: 

104 APi = P1(ea + nc>a + vc)-P1„1(ea + nc,xa + v.) 

* t -  p i ( 8 t ' x t »  "  ' w V t '  1 0 5  

From Equations 38, 42, 104 and 105 

e (T) , v ) - Ap. - Ap + N. - ~ BA t, 106 
I C C  1  " G ^  X  I q  X  

When Equation 106 is inserted in Equations 102 and 103, the terms con­

taining B cancel leaving 

M M M 

<*i - ̂  + Vsr • I " *V "1) 2v = 0 
i = 1 1 1 i = 1 1 i = 1 1 

10? 

M ev M M 

(Api - *V "iW - è S(Api • + "V 2X= 0 

i = 1 1 i = 1 1 i = 1 

108 

The first order approximation is now made for Ap - Ap . 
I 1 

 ̂ = + 8V\ 109 

where 

\ = "c + \ U0 
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V = V +6 111 
t c v 

Now, Equations 107 and 108 can be written as 

M MM 

+ B V 2\^-2\^ ^ 
I = I 1 1 I = I 1 I = I 1 1 

Me M e M 

1  =  1  1  1  1 = 1  1  1  =  1  
2 5X ÂE7 " Z EV, S 

N, 

i i 
113 

It is noted that 

M 

E, 'I _ 

1 = 1 \ *1 

M \a 

116 

M 

E 

1 = 1 

M e 
4, Y-, 
jd-x AT± 

117 

1 = 1 

M ey ME. 

\A . °  
I = I  1  1  I = I  

E. 118 
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Equations 112 and 113 become 

M E. M EE M E. 

i  =  1  1  i  =  1  1  1 = 1  1  

119 

M B i M E. M E. 

I = I  1  I = I  1  I = I  1  

120 

Equations 119 and 120 can be solved simultaneously for Ô and 6 . 
M « 

M 

where 

6 . 1 
D 

121 

122 

»  ' E v 1  , »  \ \  

AI=\ m-ihf 
I = I  1  1  I = I  1  

123 

1 1 = 1 1 1 1 = 1 1 

124 

I = I 1 I = I 1 LI = I 1 J 

125 
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The average value of 5^ and 6^ is zero, since the average value of is 

zero. The variance is found in the following way: 

M M N.N.A.A. 
ô ' 

N D" M M i = 1 j = 1 

^ ^ 2  2 ^  
u i = 1 j = 1 1 J 

2 
The average value of N.N., for i f j, is zero; the average value of N. 

X J I 

is if At,. 

-5 

M a2 

i = 1 i 

M b2 

< =  2 >  = 4  '  Â Z -  1 2 9  
=2 FRL "I 

These equations can he reduced to 

, M EV 
2 

«•> • t 2 ̂ 
i = 1 

2 
M E_ 

< s v 2 >  =f2-st 1 3 1  

i = 1 1 

In order to estimate the variance of the positioning error, an 
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estimate must be made for the variance of the noise, N2. This estimate is 

obtained from the minimum value of the error function. The minimum value 

of the truncated error function evaluated at the computed position of the 

navigator is actually computed, but if a sufficient number of terms is 

carried in the expansion this is approximately equal to the error function 

given by Equation 100. This equation can be rewritten as 

M e 2 M 

F(%'VC) = Z ÂET - È EI)2 132 

i = 1 1 i = 1 

When Equation 106 is inserted into Equation 132, the terms containing B 

cancel and the result is 

M M 

F<VVC>= 2<<*I-*VNI)2 AB - ¥ 2 (*I-*VNI 
i = 1 1 1 i = 1 

)]2 133 

At this point it is necessary to assume that Ap - Ap is small with 
i 

respect to With this assumption made, the error function can be 

written as 

M n2 M 

P(VVC> - 2S:"Ï[2 NI]2 134 

i = 1 1 i = 1 

M ! TO 2 

SET tNi - ~ Z Ni 3 135 

i = 1 1 i = 1 

Since the noise signal is being considered for a finite amount of time, 

some average value will be observed. 
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f M 

< f n « >  =  ï  /  136 

tQ i =1 

The integral of the AC component of the noise over the time interval At^ 

is 

r 1 fn At *L, 
J [ fn(t) - <fn(t)>] at = ̂  [Ni . —i 137 

Vi i = 1 

The variance of this integral is equal to the product of the variance of 

the noise and the time interval, At^. 

f 2 At M f 2 

< -77- [N^ ,'N.)]2 > = < > = -g- M2At^ 138 
C i = 1 C 

This equation can be solved for N2. 

M At 

LI2 =  <H^TNI-IRSNI]2> 139 

i = 1 

i = 1 1 i = 1 

140 

The RMS errors in the latitude and longitude predictions can now be writ­

ten as 
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nRMS 

H \ , v c )  — Ev. 
—1 c '  c \ 1 i_ 
\ M D / . At 
' 1 = 1 1 

142 

RMS •1 D / > At. M 
1 = 1 

143 

Summary of the Computations 

At this point it seems appropriate to summarize the equations leading 

to the computation of a position fix. At each data point i, the spheri­

cal coordinates of the satellite and the navigator's assumed location are 

computed. The following terms are computed from these coordinates. 

r.R 
i ss 

r.R 
i sc 

riRcss 

r.R 
i csc 

r.R 
i ccs 

r R 
i ccc 

r.R sin 0 sin 0 
1 SI AI 

r.R sin 0 cos 0 
1 

r.R cos 0 sin 0 sin (X - X ) 
Si ai Si ai 

r.R cos 0 sin 0 cos (X - X ) 
T A

T 
SI \ 

r.R cos 0 cos 0 sin (X - X ) 
T SI A

T 
SI V 

r.R cos 0 cos 0 cos (X - X ) 
i si ai si < 

144 

145 

146 

14? 

148 

149 

The slant range and its partial derivatives with respect to T| and v 

are computed in the following order. 
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>i ="f(r~ R) + 2 [r.R - r R - r.R ] 
i i ss i ccc 150 

10, 

01, 

2°i 

11, 

02, 

30, 

21. 

12. 

03 j 

-%C + ="ASC)/PL 

riRss + riRccc " P10jL P̂i 

riRcss ' 

riRccc " P01. ̂ Pi 

riRsc " riRcsc " 3 P10±P20±̂ /P1 

riRccs ' 2 P101Plli * P011P201̂ Pi 

"riRcsc " 2 P01,PH, " P101P02î Pi 

riRccs " 3 P011P021̂ Pi 

151 

152 

153 

154 

155 

156 

157 

158 

159 

These equations are sufficient if the error function is to be truncated 

after the third order terms for the third order method. The fourth order 

method requires the following additional equations. 

X (~riRss " riRccc " 3 p20, " 4 P10iP301̂ Pi l60 

P31j_ ^"riRcss " 3 P201P111 ' 3 P101P21i " P30iP01î Pi 161 
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P22±  ̂ RIRCCC 2P11± "  ̂ P10 P12, " 2 P01 P21. ~P20, P02. ̂ PI 
i i i i i "i 

162 

*13I = (-="I*CSS - % PU 0̂2I " 3 P01,P12, " %P03̂ /PI 1% 

Po4i "̂riRccc " 3 P02± - 4 P01_P03_)/Pi 164 

The slant range and its partial derivatives for time t are stored for use 

later. The set |e k̂ J is computed from the slant range and its partial de­

rivatives at t. and t. . 
x i-1 

EI • PI - PI-I • °I IS? 

and, for j and k not both zero, 

X = X ' 166 

The set of products e^ e^ j is computed and the partial sum over 
i, which will be called S , ,, is accumulated for each member. ' abed7 

aUccL. = Z ÂT eab, ecd, 167 

J- I = 1 I 1 1 

Table 1 indicates the numerical values of the subscripts for the products 

which must be computed for both the third order and fourth order methods. 

The partial sum over i of the Doppler data, a,, is also accumulated. 

After the pass of the satellite, or more specifically, after any 

time t when an attempt is made to determine a position fix, the following 
M ' 
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computations are made. The total time intervaJL T is 

T = 'M - *0 168 

Table 1. Designation of subscripts for product terms e^ 

cd/ab 00 10 01 20 11 02 

00 

10 

01 

20 

11 

02 

30 

21 

12 

03 

40 

31 

22 

13 

04 

x 

x 

x 

x 

x 

x 

x 

x 

x 

X 

X 

X 

X 

X 

Third Order z 
/ 

/ 
/ 

/ 

x 

x 

X 

X 

Fourth Order 

x: product term to be computed 

The set|bjk|is computed from 
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M 

b ~ • i (PM • PO " 2EZ °I) 169 

1 = 1  

and, for i and j not both equal to zero, 

V= " î (% " 170 

The set is computed from: 

F00 = soooo„ " T boo 171 
M 

F10 = 2^S0010m " T boobio^ 172 

F01 ~ 2̂ S0001M " T BOOBOÎ  173 

F20 ~ 2̂ S1010M ' T B10  ̂ + 2̂ S0020M " T B00B20̂   ̂

Fn ~ 2̂ SIOOIM " T bioboi^ + 2̂ SOOIIM " T boobii^ 175 

F02 = 2^S0101m " T b01  ̂ + 2^S0002m " T b00b02  ̂ 176 

F30 = 6̂ S1020M " T B10B20) + 2̂ S0030M " T B00B30) 177 

F21 " ̂lOll^ " T b10bll^ + 2̂ S0120M " T b01b20^ 

+ 2̂ S0021M ' T B00B21̂  178 

F12 ~ ̂ (^0111^ " T b01bll^ + 2̂ S1002m " T b10b02^ 

+ 2(30012% - ? TOOV I?? 
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F03 6̂ S0102M " T B01B02̂  + 2̂ S0003M " T B00B03 ̂ 
180 

The above equations are sufficient for the third order method. The fol­

lowing equations must be included for the fourth order method. 

F40 ~ 6(S2020M 
T B20  ̂ + 8̂ S1030M " T BLOB3°̂  

+ 2^soo4oM " T boob4o 

F31 6̂ S2011m " T b20bll 

+ 2(soi30M ' T boib30 

F22 2(S2002 " T B20B02 
M 

+ Ŝ1012 " T B10B12 
M 

+ 2̂ S0022M " T B00B22 

F13 6̂ S1102m " T bllb02 

+ 2̂ SIOO3M ' T b10b03 

181 

+ 6(S1021m " T blOb2l^ 

+ 2(S0031m " T b00b31) 

+ ̂ SHH " T bll ^ 
M 

+ 4(̂ 0121̂  " T B01B21̂  

+ 6̂ S0112M " T B01B12̂  

+ 2(SNMO -TB^BJ 

182 

183 

0013. 'M 00 13' 184 

F04 6̂ S0202m " T b02 ̂  + 8̂ S0103m ' T b01b03^ 

+ 2(̂ 0004 ~  ̂ ^NN^NH) 
M 

00 04; 185 

An iterative procedure is now started with T) = v =0. The set 
8, EL 

|Fjk J is used to compute the following functions. 
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V VVa> = F10 + F2o\ + Fllva 

+ I F30\2 + f2lVa + I >Vaa 

+ 5 Va3 + I *v\\ + G R22 Vag + I 186 

FA'Va> = F01 + Va + F02Va 

+ I F2l\2 + FlAVa + I F03
Va2 

+ S FU\3 + I F22\2"A + I W,2 + 5 WA3 18T 

WVa1 = F20 + Va + F21Va 

+ I Va2 + F3lVa + I F22Va2 188 

VW = F11 + F2l\ + F12Va 

+ I F%"a2 * F22Va + I 189 

Fvv<VVa> = F02 + FlA + P03
Va 

+ I F22\2 + FlAVa + «0 

All of the terms in the preceding equations are used in the fourth order 

method. The underscored terms are omitted for the third order method. 



www.manaraa.com

43 

The following equations define the iteration procedure. For the first 

iteration, T) = v =0. 
a a 

V\'va> VVVa> * VVVa> Pw<VVa> 
An = ———————— 0 191 

W".) Fw<VVa> - WVa> 

WV VW - FA>V VVV 
Av = 192 

V V V  F v A > V a >  "  W V  

\ = \ + AT1 193 C d 

V = V + AV 194 
c a 

The computed position for any iteration becomes the assumed position for 

the next iteration. 

When the magnitudes of AT) and A v  are both less than some limit (per-

—T 
haps 10 radians), the iteration process is terminated and the accuracy 

of the position fix is estimated. First the error function is evaluated 

at the ship's computed position. 
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F(VVC> = F00 + F1<A + F01Vc 

+ I Fêo\2 + FliVc + : F02V=2 

+ 5 Vc3 + i F21%2v= + I Vcvc2 + I P03VC3 

" k Fko\h + s y/'. + Ê f22%\2 * s FnVc3 + kFokv 

195 

The underscored terms are the fourth order terms. The other functions 

needed to compute the estimated accuracy should be evaluated at the navi­

gator's computed position. Hovever, if the satellite subtrack does not 

come within 100 nautical miles of the navigator, these functions are 

closely approximated by their values at the original assumed position of 

the navigator. If these approximations are made, the estimated accura­

cies are given by 

\MS 

1 

M(S1010 - T bio ) D 
M 

196 

RMS 

F<VV 

M(Smni - T b^) D 

197 

where 
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^LOOLĴ  ~ T B10B01̂  

(S1010M " T \O  ̂ (̂ 0101̂  " T BOI  ̂
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COMPUTER INVESTIGATION OF THE 

TRUNCATION METHOD 

Two separate computer studies were used to analyze the truncation 

method. The first study investigated the effect of noise on the posi­

tioning error. The second study simulated the navigator making a posi­

tion fix and investigated the effect of truncating the Taylor series of 

the error function. 

Noise Error Investigation 

In the noise error investigation, Equations 130 and 131 were used to 

predict the RMS errors in latitude and longitude due to noise in the re­

ceived Doppler frequency. The errors were computed for various positions 

of the navigator with respect to the plane of the satellite's orbit. The 

RMS position error is proportional to the RMS value of the noise in the 

received Doppler frequency. For convenience, a standard RMS noise figure 

was chosen to be a one cycle error in a one second count of the cycles in 

the Doppler signal for a transmitter frequency of 100 megacycles. A cir­

cular, polar orbit was chosen for the satellite. The rotation of the 

earth was included in the computations for the navigator's position. The 

full pass of the satellite, from horizon to horizon, was utilized in the 

computations. 

From preliminary computations it became obvious that the length of 

the time interval At, and hence the number of intervals, did not greatly 

influence the errors. The RMS errors in latitude and longitude were com­

puted for a 400 nautical mile high orbit with the navigator on the equator 
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approximately 100 nautical miles from the satellite subtreek. The RMS 

errors improved by only 3$ when the time interval At was changed from 60 

seconds (13 intervals) to 5 seconds (173 intervals). This result should 

be anticipated since the full Doppler curve was utilized in both passes. 

For the study it was decided to use a representative value of 20 seconds 

for At. 

The curves in Figure 3 illustrate the variation in the RMS error as 

a function of the distance of the navigator from the satellite subtrack 

for three different satellite heights. Notice that the errors are typi­

cally better than .06 nautical miles for the standard noise that was 

used. As the satellite orbital plane comes within 100 nautical miles of 

being overhead, the errors increase quite drastically. This is anticipated 

because the slant range is very insensitive to changes in longitude when 

the navigator is near the plane of the orbit. 

The RMS position errors were also computed for various latitudes of 

the navigator. The results were almost identical with the curves in 

Figure 3 and would hardly be distinguishable if plotted. There is an ex­

ception to this which occurs for navigation near the poles of the earth 

which is explained in the following way. At the equator, longitude is 

measured perpendicular to the plane of the orbit and latitude is measured 

parallel to the plane. However, at the poles, latitude is measured per­

pendicular to the plane of the orbit and longitude is measured, more or 

less, parallel to the plane. Therefore, the latitude error curves near 

the pole approximate the longitude error curves near the equator. And the 

longitude error curves near the pole approximate the latitude error curves 
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•H 
tj .12 . 

5 .10 . 

Longitude error 
600 

ft .06 . 

400 

600 Latitude error 

400 
.00 

600 700 800 100 200 300 400 0 1000 

Ground Range to Satellite Subtrack, (nautical miles) 

Parameter: Satellite Height, (nautical miles) 

Figure 3« Position error due to noise 
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near the equator. 

Truncation Error Investigation 

To determine the effect on the position error of truncating the error 

function, the actual position fixes were simulated on the computer. The 

satellite was placed in a circular, polar orbit 400 nautical miles above 

the earth. The navigator was placed on the equator, but was assumed to be 

at a point nearby. The same error distance was assumed for both latitude 

and longitude. The coefficients for the Taylor series of the error func­

tion up through fourth order terms were computed using the full pass of 

the satellite. A position fix for the fourth order method was made using 

all of the terms. Then a position fix for the third order method was made 

using all but the fourth order terms. The curves in Figure 4 show the re­

sults for the third order method. The longitude error is plotted as a 

function of the ground range to the satellite subtrack with the original 

longitude error as a parameter. The errors in latitude were always sub­

stantially less than the errors in longitude. Notice that if the navi­

gator's original longitude estimate was correct within 10 nautical miles, 

the error due to truncation after third order terms is less than the RMS 

error due to the standard value of noise. 

The curves in Figure 5 show the results for the fourth order method. 

The longitude error is plotted as a function of the ground range to the 

satellite subtrack with the original longitude error as a parameter. The 

errors in latitude were always less than the errors in longitude. Notice 

that if the navigator's original longitude estimate was correct within k-0 

nautical miles, the error due to truncation after fourth order terms is 



www.manaraa.com

50 

T55 i55 555 455 $55 655 755 8ôo 9Ô0 îoôo 

Ground Range to Satellite Subtrack, (nautical miles) 

Parameter: Error in Assumed Longitude, (nautical miles) 

Satellite Height: 400 nautical miles 

Figure 4. Longitudinal truncation error for thii-d order 
method 
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100 200 300 400 500 600 700 800 900 1000 

Ground Range to Satellite Subtrack, (nautical miles) 

Parameter: Error in Assumed Longitude, (nautical miles) 

Satellite Height: 400 nautical miles 

Figure 5» Longitudinal truncation error for fourth 
order method 
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on the order of the RMS error due to the standard value of noise. 

The truncation error curves were computed for satellite heights of 

500 and 600 nautical miles with the navigator's position in error by 10 

nautical miles in both latitude and longitude. The curves were nearly 

identical with the 400 nautical mile high curve. 

A bias of 10 cps was superimposed on the Doppler data for some sample 

satellite passes, and no noticeable effect was observed on the errors. 

The curves in Figure 6 show the errors in the computed position for 

the third order method when the standard noise was introduced in the 

Doppler data during the satellite pass. The satellite height was 400 nau­

tical miles and the navigator's position was assumed in error by 10 nauti­

cal miles in both latitude and longitude. The continuous curves indicate 

the estimated RMS position error. The discrete points indicate the actual 

error in the computed position. 
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Figure 6. Estimated and actual position error for third order 
method with standard noise introduced in Doppler data 
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CONCLUSIONS 

The proposed truncation method is intended to allow high accuracy nav­

igation using a more modest computer than is presently thought possible 

with the least squares method. No attempt has been made to justify this 

in detail. The basis for the contention is that the truncation method 

allows most of the computations to be made during the pass of the satel­

lite, with few calculations following the pass. This permits a computed 

position soon after the pass is completed using a modest computer. 

The major disadvantage of the method is that the accuracy of the po­

sition fix is dependent on the accuracy of the navigator's estimated posi­

tion before the pass. 

The computer study indicates that one-tenth nautical mile accuracies 

are possible if the navigator's estimated position is accurate to 10 

nautical miles for the third order method and 40 nautical miles for the 

fourth order method. This assumes that the satellite's subtrack does not 

come within 100 nautical miles of the navigator. It should be noted that 

the accuracy of the position fix will always be at least as accurate as 

the first iteration in the least squares method. Therefore, a navigator 

who is lost can eventually find his position using the truncation method 

if he can find it with the least squares method. 
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